Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 9: 2293, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30319590

RESUMO

Brucellosis, an infectious disease caused by Brucella, is one of the most extended bacterial zoonosis in the world and an important cause of economic losses and human suffering. The lipopolysaccharide (LPS) of Brucella plays a major role in virulence as it impairs normal recognition by the innate immune system and delays the immune response. The LPS core is a branched structure involved in resistance to complement and polycationic peptides, and mutants in glycosyltransferases required for the synthesis of the lateral branch not linked to the O-polysaccharide (O-PS) are attenuated and have been proposed as vaccine candidates. For this reason, the complete understanding of the genes involved in the synthesis of this LPS section is of particular interest. The chemical structure of the Brucella LPS core suggests that, in addition to the already identified WadB and WadC glycosyltransferases, others could be implicated in the synthesis of this lateral branch. To clarify this point, we identified and constructed mutants in 11 ORFs encoding putative glycosyltransferases in B. abortus. Four of these ORFs, regulated by the virulence regulator MucR (involved in LPS synthesis) or the BvrR/BvrS system (implicated in the synthesis of surface components), were not required for the synthesis of a complete LPS neither for virulence or interaction with polycationic peptides and/or complement. Among the other seven ORFs, six seemed not to be required for the synthesis of the core LPS since the corresponding mutants kept the O-PS and reacted as the wild type with polyclonal sera. Interestingly, mutant in ORF BAB1_0953 (renamed wadD) lost reactivity against antibodies that recognize the core section while kept the O-PS. This suggests that WadD is a new glycosyltransferase adding one or more sugars to the core lateral branch. WadD mutants were more sensitive than the parental strain to components of the innate immune system and played a role in chronic stages of infection. These results corroborate and extend previous work indicating that the Brucella LPS core is a branched structure that constitutes a steric impairment preventing the elements of the innate immune system to fight against Brucella.

2.
Front Microbiol ; 9: 1092, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29887851

RESUMO

Brucellosis is a bacterial zoonosis of worldwide distribution caused by bacteria of the genus Brucella. In Brucella abortus and Brucella melitensis, the major species infecting domestic ruminants, the smooth lipopolysaccharide (S-LPS) is a virulence factor. This S-LPS carries a N-formyl-perosamine homopolymer O-polysaccharide that is the major antigen in serodiagnostic tests and is required for virulence. We report that the Brucella O-PS can be structurally and antigenically modified using wbdR, the acetyl-transferase gene involved in N-acetyl-perosamine synthesis in Escherichia coli O157:H7. Brucella constructs carrying plasmidic wbdR expressed a modified O-polysaccharide but were unstable, a problem circumvented by inserting wbdR into a neutral site of chromosome II. As compared to wild-type bacteria, both kinds of wbdR constructs expressed shorter O-polysaccharides and NMR analyses showed that they contained both N-formyl and N-acetyl-perosamine. Moreover, deletion of the Brucella formyltransferase gene wbkC in wbdR constructs generated bacteria producing only N-acetyl-perosamine homopolymers, proving that wbdR can replace for wbkC. Absorption experiments with immune sera revealed that the wbdR constructs triggered antibodies to new immunogenic epitope(s) and the use of monoclonal antibodies proved that B. abortus and B. melitensis wbdR constructs respectively lacked the A or M epitopes, and the absence of the C epitope in both backgrounds. The wbdR constructs showed resistance to polycations similar to that of the wild-type strains but displayed increased sensitivity to normal serum similar to that of a per R mutant. In mice, the wbdR constructs produced chronic infections and triggered antibody responses that can be differentiated from those evoked by the wild-type strain in S-LPS ELISAs. These results open the possibilities of developing brucellosis vaccines that are both antigenically tagged and lack the diagnostic epitopes of virulent field strains, thereby solving the diagnostic interference created by current vaccines against Brucella.

3.
Front Microbiol ; 8: 2657, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29375522

RESUMO

The brucellae are facultative intracellular bacteria that cause a worldwide extended zoonosis. One of the pathogenicity mechanisms of these bacteria is their ability to avoid rapid recognition by innate immunity because of a reduction of the pathogen-associated molecular pattern (PAMP) of the lipopolysaccharide (LPS), free-lipids, and other envelope molecules. We investigated the Brucella homologs of lptA, lpxE, and lpxO, three genes that in some pathogens encode enzymes that mask the LPS PAMP by upsetting the core-lipid A charge/hydrophobic balance. Brucella lptA, which encodes a putative ethanolamine transferase, carries a frame-shift in B. abortus but not in other Brucella spp. and phylogenetic neighbors like the opportunistic pathogen Ochrobactrum anthropi. Consistent with the genomic evidence, a B. melitensis lptA mutant lacked lipid A-linked ethanolamine and displayed increased sensitivity to polymyxin B (a surrogate of innate immunity bactericidal peptides), while B. abortus carrying B. melitensis lptA displayed increased resistance. Brucella lpxE encodes a putative phosphatase acting on lipid A or on a free-lipid that is highly conserved in all brucellae and O. anthropi. Although we found no evidence of lipid A dephosphorylation, a B. abortus lpxE mutant showed increased polymyxin B sensitivity, suggesting the existence of a hitherto unidentified free-lipid involved in bactericidal peptide resistance. Gene lpxO putatively encoding an acyl hydroxylase carries a frame-shift in all brucellae except B. microti and is intact in O. anthropi. Free-lipid analysis revealed that lpxO corresponded to olsC, the gene coding for the ornithine lipid (OL) acyl hydroxylase active in O. anthropi and B. microti, while B. abortus carrying the olsC of O. anthropi and B. microti synthesized hydroxylated OLs. Interestingly, mutants in lptA, lpxE, or olsC were not attenuated in dendritic cells or mice. This lack of an obvious effect on virulence together with the presence of the intact homolog genes in O. anthropi and B. microti but not in other brucellae suggests that LptA, LpxE, or OL ß-hydroxylase do not significantly alter the PAMP properties of Brucella LPS and free-lipids and are therefore not positively selected during the adaptation to intracellular life.

4.
Vet Res ; 45: 72, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-25029920

RESUMO

Brucella spp. are Gram-negative bacteria that behave as facultative intracellular parasites of a variety of mammals. This genus includes smooth (S) and rough (R) species that carry S and R lipopolysaccharides (LPS), respectively. S-LPS is a virulence factor, and mutants affected in the S-LPS O-polysaccharide (R mutants), core oligosaccharide or both show attenuation. However, B. ovis is naturally R and is virulent in sheep. We studied the role of B. ovis LPS in virulence by mutating the orthologues of wadA, wadB and wadC, three genes known to encode LPS core glycosyltransferases in S brucellae. When mapped with antibodies to outer membrane proteins (Omps) and R-LPS, wadB and wadC mutants displayed defects in LPS structure and outer membrane topology but inactivation of wadA had little or no effect. Consistent with these observations, the wadB and wadC but not the wadA mutants were attenuated in mice. When tested as vaccines, the wadB and wadC mutants protected mice against B. ovis challenge. The results demonstrate that the LPS core is a structure essential for survival in vivo not only of S brucellae but also of a naturally R Brucella pathogenic species, and they confirm our previous hypothesis that the Brucella LPS core is a target for vaccine development. Since vaccine B. melitensis Rev 1 is S and thus interferes in serological testing for S brucellae, wadB mutant represents a candidate vaccine to be evaluated against B. ovis infection of sheep suitable for areas free of B. melitensis.


Assuntos
Proteínas de Bactérias/genética , Vacina contra Brucelose/imunologia , Brucella ovis/imunologia , Brucelose/imunologia , Glicosiltransferases/genética , Lipopolissacarídeos/genética , Doenças dos Ovinos/imunologia , Animais , Anticorpos Antibacterianos/sangue , Proteínas de Bactérias/metabolismo , Vacina contra Brucelose/genética , Brucelose/microbiologia , Brucelose/veterinária , Feminino , Glicosiltransferases/metabolismo , Lipopolissacarídeos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Oligossacarídeos/genética , Oligossacarídeos/metabolismo , Reação em Cadeia da Polimerase/veterinária , Análise de Sequência de DNA/veterinária , Ovinos , Doenças dos Ovinos/microbiologia , Virulência
5.
J Bacteriol ; 196(16): 3045-57, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24936050

RESUMO

The brucellae are the etiological agents of brucellosis, a worldwide-distributed zoonosis. These bacteria are facultative intracellular parasites and thus are able to adjust their metabolism to the extra- and intracellular environments encountered during an infectious cycle. However, this aspect of Brucella biology is imperfectly understood, and the nutrients available in the intracellular niche are unknown. Here, we investigated the central pathways of C metabolism used by Brucella abortus by deleting the putative fructose-1,6-bisphosphatase (fbp and glpX), phosphoenolpyruvate carboxykinase (pckA), pyruvate phosphate dikinase (ppdK), and malic enzyme (mae) genes. In gluconeogenic but not in rich media, growth of ΔppdK and Δmae mutants was severely impaired and growth of the double Δfbp-ΔglpX mutant was reduced. In macrophages, only the ΔppdK and Δmae mutants showed reduced multiplication, and studies with the ΔppdK mutant confirmed that it reached the replicative niche. Similarly, only the ΔppdK and Δmae mutants were attenuated in mice, the former being cleared by week 10 and the latter persisting longer than 12 weeks. We also investigated the glyoxylate cycle. Although aceA (isocitrate lyase) promoter activity was enhanced in rich medium, aceA disruption had no effect in vitro or on multiplication in macrophages or mouse spleens. The results suggest that B. abortus grows intracellularly using a limited supply of 6-C (and 5-C) sugars that is compensated by glutamate and possibly other amino acids entering the Krebs cycle without a critical role of the glyoxylate shunt.


Assuntos
Brucella abortus/enzimologia , Brucella abortus/patogenicidade , Brucelose/microbiologia , Frutose-Bifosfatase/metabolismo , Malato Desidrogenase/metabolismo , Piruvato Ortofosfato Diquinase/metabolismo , Animais , Brucella abortus/genética , Brucella abortus/crescimento & desenvolvimento , Brucelose/patologia , Carbono/metabolismo , Modelos Animais de Doenças , Frutose-Bifosfatase/genética , Deleção de Genes , Malato Desidrogenase/genética , Redes e Vias Metabólicas/genética , Camundongos , Piruvato Ortofosfato Diquinase/genética , Virulência
6.
Microb Pathog ; 73: 53-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24927935

RESUMO

Brucellosis is a worldwide extended zoonosis caused by Brucella spp. These gram-negative bacteria are not readily detected by innate immunity, a virulence-related property largely linked to their surface lipopolysaccharide (LPS). The role of the LPS lipid A and O-polysaccharide in virulence is well known. Moreover, mutation of the glycosyltransferase gene wadC of Brucella abortus, although not affecting O-polysaccharide assembly onto the lipid-A core section causes a core oligosaccharide defect that increases recognition by innate immunity. Here, we report on a second gene (wadB) encoding a LPS core glycosyltransferase not involved in the assembly of the O-polysaccharide-linked core section. As compared to wild-type B. abortus, a wadB mutant was sensitive to bactericidal peptides and non-immune serum, and was attenuated in mice and dendritic cells. These observations show that as WadC, WadB is also involved in the assembly of a branch of Brucella LPS core and support the concept that this LPS section is a virulence-related structure.


Assuntos
Brucella abortus/química , Brucella abortus/patogenicidade , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Lipopolissacarídeos/química , Lipopolissacarídeos/toxicidade , Animais , Peptídeos Catiônicos Antimicrobianos/farmacologia , Atividade Bactericida do Sangue , Células Dendríticas/microbiologia , Feminino , Deleção de Genes , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Viabilidade Microbiana , Virulência
7.
Microb Pathog ; 58: 29-34, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23219811

RESUMO

The gram-negative bacteria of the genus Brucella are facultative intracellular parasites that cause brucellosis, a world wide-distributed zoonotic disease that represents a serious problem for animal and human health. There is no human-to-human contagion and, since there is no human vaccine, animal vaccination is essential to control brucellosis. However, current vaccines (all developed empirically) do not provide 100% protection and are infectious in humans. Attempts to generate new vaccines by obtaining mutants lacking the lipopolysaccharide O-polysaccharide, in purine metabolism or in Brucella type IV secretion system have not been successful. Here we propose a new approach to develop brucellosis vaccines based on the concept that Brucella surface molecules evade efficient detection by innate immunity, thus delaying protective Th1 responses and opening a time window to reach sheltered intracellular compartments. We showed recently that a branch of the core oligosaccharide section of Brucella lipopolysaccharide hampers recognition by TLR4-MD2. Mutation of glycosyltransferase WadC, involved in the synthesis of this branch, results in a lipopolysaccharide that, while keeping the O-polysaccharide essential for optimal protection, shows a truncated core, is more efficiently recognized by MD2 and triggers an increased cytokine response. In keeping with this, the wadC mutant is attenuated in dendritic cells and mice. In the mouse model of brucellosis vaccines, the Brucella abortus wadC mutant conferred protection similar to that provided by S19, the best cattle vaccine available. The properties of the wadC mutant provide the proof of concept for this new approach and open the way for more effective brucellosis vaccines.


Assuntos
Vacina contra Brucelose/imunologia , Brucelose/imunologia , Brucelose/prevenção & controle , Lipopolissacarídeos/imunologia , Antígenos O/imunologia , Animais , Carga Bacteriana , Vacina contra Brucelose/administração & dosagem , Vacina contra Brucelose/genética , Brucella abortus/enzimologia , Brucella abortus/genética , Modelos Animais de Doenças , Descoberta de Drogas/tendências , Técnicas de Inativação de Genes , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Lipopolissacarídeos/biossíntese , Camundongos , Camundongos Endogâmicos BALB C , Antígenos O/biossíntese , Baço/microbiologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia
8.
Microbiology (Reading) ; 158(Pt 4): 1037-1044, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22262102

RESUMO

The brucellae are facultative intracellular pathogens of mammals that are transmitted by contact with infected animals or contaminated materials. Several major lipidic components of the brucella cell envelope are imperfectly recognized by innate immunity, thus contributing to virulence. These components carry large proportions of acyl chains of lactobacillic acid, a long chain cyclopropane fatty acid (CFA). CFAs result from addition of a methylene group to unsaturated acyl chains and contribute to resistance to acidity, dryness and high osmolarity in many bacteria and to virulence in mycobacteria. We examined the role of lactobacillic acid in Brucella abortus virulence by creating a mutant in ORF BAB1_0476, the putative CFA synthase gene. The mutant did not incorporate [(14)C]methyl groups into lipids, lacked CFAs and synthesized the unsaturated precursors, proving that BAB1_0476 actually encodes a CFA synthase. BAB1_0476 promoter-luxAB fusion studies showed that CFA synthase expression was promoted by acid pH and high osmolarity. The mutant was not attenuated in macrophages or mice, strongly suggesting that CFAs are not essential for B. abortus intracellular life. However, when the mutant was tested under high osmolarity on agar and acid pH, two conditions likely to occur on contaminated materials and fomites, they showed reduced ability to grow or survive. Since CFA synthesis entails high ATP expenses and brucellae produce large proportions of lactobacillic acyl chains, we speculate that the CFA synthase has been conserved because it is useful for survival extracellularly, thus facilitating persistence in contaminated materials and transmission to new hosts.


Assuntos
Proteínas de Bactérias/metabolismo , Brucella abortus/enzimologia , Ciclopropanos/metabolismo , Ácidos Graxos/metabolismo , Metiltransferases/metabolismo , Ácidos/metabolismo , Animais , Proteínas de Bactérias/genética , Brucella abortus/genética , Brucella abortus/patogenicidade , Linhagem Celular , Feminino , Regulação Bacteriana da Expressão Gênica , Concentração de Íons de Hidrogênio , Macrófagos/microbiologia , Metiltransferases/genética , Camundongos , Camundongos Endogâmicos BALB C , Mutagênese Sítio-Dirigida , Fases de Leitura Aberta , Virulência
9.
PLoS One ; 6(1): e16030, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21249206

RESUMO

The brucellae are α-Proteobacteria facultative intracellular parasites that cause an important zoonosis. These bacteria escape early detection by innate immunity, an ability associated to the absence of marked pathogen-associated molecular patterns in the cell envelope lipopolysaccharide, lipoproteins and flagellin. We show here that, in contrast to the outer membrane ornithine lipids (OL) of other Gram negative bacteria, Brucella abortus OL lack a marked pathogen-associated molecular pattern activity. We identified two OL genes (olsB and olsA) and by generating the corresponding mutants found that olsB deficient B. abortus did not synthesize OL or their lyso-OL precursors. Liposomes constructed with B. abortus OL did not trigger IL-6 or TNF-α release by macrophages whereas those constructed with Bordetella pertussis OL and the olsB mutant lipids as carriers were highly active. The OL deficiency in the olsB mutant did not promote proinflammatory responses or generated attenuation in mice. In addition, OL deficiency did not increase sensitivity to polymyxins, normal serum or complement consumption, or alter the permeability to antibiotics and dyes. Taken together, these observations indicate that OL have become dispensable in the extant brucellae and are consistent within the trend observed in α-Proteobacteria animal pathogens to reduce and eventually eliminate the envelope components susceptible of recognition by innate immunity.


Assuntos
Brucella abortus/imunologia , Membrana Celular/imunologia , Evasão da Resposta Imune , Imunidade Inata , Lipídeos/imunologia , Ornitina/análogos & derivados , Animais , Proteínas da Membrana Bacteriana Externa/imunologia , Brucella abortus/patogenicidade , Lipídeos de Membrana/imunologia , Camundongos , Ornitina/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...